ssjgl
ssjgl.Rd
ssjgl
Usage
ssjgl(
Y,
penalty = "fused",
lambda0,
lambda1,
lambda2,
v1 = 1,
v0s = seq(1e-04, 0.01, len = 10),
doubly = FALSE,
rho = 1,
a = 1,
b = 1,
maxitr.em = 500,
tol.em = 1e-04,
maxitr.jgl = 500,
tol.jgl = 1e-05,
warm = NULL,
warm.connected = NULL,
truncate = 1e-05,
normalize = FALSE,
c = 0.1,
impute = TRUE
)
Arguments
- Y
List of k data matrices
- penalty
Either "fused" or "group"
- lambda0
scalar for penalization of the diagonals
- lambda1
either constant or matrix of values to search over
- lambda2
either constant or matrix of values to search over
- v1
edgewise penalties
- v0s
edgewise penalties
- doubly
True or False
- rho
default as 1
- a
initializing parameters
- b
initializing parameters
- maxitr.em
max iterations of EM algorithm. Default 500
- tol.em
default 1e-4 ADD MORE
- maxitr.jgl
max iterations for JGL. default 500
- tol.jgl
default 1e-4 ADD MORE
- warm
default NULL. warming parameter for M step
- warm.connected
parameter for M-step
- truncate
cutoff to truncate default 1e-5
- normalize
True or False
- c
constant. Default 0.1
- impute
true or false